73 research outputs found

    Ueber Spalt-Technetium III: 5 s ¹⁰²Tc [1]

    Get PDF

    Ueber Spalt-Technetium I

    Get PDF

    Metal-Organic Polyhedra as Building Blocks for Porous Extended Networks

    Get PDF
    Altres ajuts: "la Caixa" Foundation (ID 100010434)Metal-organic polyhedra (MOPs) are a subclass of coordination cages that can adsorb and host species in solution and are permanently porous in solid-state. These characteristics, together with the recent development of their orthogonal surface chemistry and the assembly of more stable cages, have awakened the latent potential of MOPs to be used as building blocks for the synthesis of extended porous networks. This review article focuses on exploring the key developments that make the extension of MOPs possible, highlighting the most remarkable examples of MOP-based soft materials and crystalline extended frameworks. Finally, the article ventures to offer future perspectives on the exploitation of MOPs in fields that still remain ripe toward the use of such unorthodox molecular porous platforms

    (Bio)Functionalisation of Metal-Organic Polyhedra by Using Click Chemistry

    Get PDF
    The surface chemistry of Metal-Organic Polyhedra (MOPs) is crucial to their physicochemical properties because it governs how they interact with external substances such as solvents, synthetic organic molecules, metal ions, and even biomolecules. Consequently, the advancement of synthetic methods that facilitate the incorporation of diverse functional groups onto MOP surfaces will significantly broaden the range of properties and potential applications for MOPs. This study describes the use of copper(I)-catalysed, azide-alkyne cycloaddition (CuAAC) click reactions to post-synthetically modify the surface of alkyne-functionalised cuboctahedral MOPs. To this end, a novel Rh(II)-based MOP with 24 available surface alkyne groups was synthesised. Each of the 24 alkyne groups on the surface of the "clickable" Rh-MOP can react with azide-containing molecules at room temperature, without compromising the integrity of the MOP. The wide substrate catalogue and orthogonal nature of CuAAC click chemistry was exploited to densely functionalise MOPs with diverse functional groups, including polymers, carboxylic and phosphonic acids, and even biotin moieties, which retained their recognition capabilities once anchored onto the surface of the MOP

    Multicomponent, Functionalized HKUST-1 Analogues Assembled via Reticulation of Prefabricated Metal-Organic Polyhedral Cavities

    Get PDF
    Metal-organic frameworks (MOFs) assembled from multiple building blocks exhibit greater chemical complexity and superior functionality in practical applications. Herein, we report a new approach based on using prefabricated cavities to design isoreticular multicomponent MOFs from a known parent MOF. We demonstrate this concept with the formation of multicomponent HKUST-1 analogues, using a prefabricated cavity that comprises a cuboctahedral Rh(II) metal-organic polyhedron functionalized with 24 carboxylic acid groups. The cavities are reticulated in three dimensions via Cu(II)-paddlewheel clusters and (functionalized) 1,3,5-benzenetricarboxylate linkers to form three- and four-component HKUST-1 analogues

    Multicomponent, Functionalized HKUST‑1 Analogues Assembled via Reticulation of Prefabricated Metal–Organic Polyhedral Cavities [Dataset]

    Get PDF
    89 pages. -- PDF file includes: S1. Materials and methods; S1.1. Materials and characterization; S1.2. Experimental methods; S1.2.1. Synthesis of COOH-RhMOP, (Br)btc, (NO2)btc and (COOH)btc; S1.2.2. Stability of COOH-RhMOP under solvothermal conditions; S1.2.3. Synthesis of RhCu-btc-HKUST-1, RhCu-(Br)btc-HKUST-1, RhCu-(NO2)btc-HKUST-1, RhCu-(NH2)btc-HKUST-1 and RhCu-(COOH)btc-HKUST-1; S.1.2.4. Blank reactions for RhCu-btc-HKUST-1; S.1.2.5. Acidic disassembly of RhCu-btc-HKUST-1; S.1.2.6. Acidic digestion of RhCu-(Br)btc-HKUST-1, RhCu-(NO2)btc-HKUST-1, RhCu-(NH2)btc-HKUST-1 and RhCu-(COOH)btc-HKUST-1; S1.2.7. Study of the hydrolytic stability of RhCu-btc-HKUST-1 and Cu(II)-HKUST- 1; S1.2.8 Study of the methylene blue removal with RhCu-btc-HKUST-1 and Cu(II)-HKUST-1; S1.2.9. Study of the catalytic activity of RhCu-btc-HKUST-1 and RhCu-(COOH)btc-HKUST-1; S1.3. Computational methods; S2. Characterization of RhCu-btc-HKUST-1; S3. Characterization of Cu(II)-HKUST-1; S4. Hydrolytic stability study of RhCu-btc-HKUST-1 and Cu(II)-HKUST-1; S4.1. DFT calculations of Rh(II) and Cu(II) paddlewheels in water; S5. Characterization of RhCu-(Br)btc-HKUST-1; S6. Characterization of RhCu-(NO2)btc-HKUST-1; S7. Characterization of RhCu-(NH2)btc-HKUST-1; S8. Characterization of RhCu-(COOH)btc-HKUST-1.Metal–organic frameworks (MOFs) assembled from multiple building blocks exhibit greater chemical complexity and superior functionality in practical applications. Herein, we report a new approach based on using prefabricated cavities to design isoreticular multicomponent MOFs from a known parent MOF. We demonstrate this concept with the formation of multicomponent HKUST-1 analogues, using a prefabricated cavity that comprises a cuboctahedral Rh­(II) metal–organic polyhedron functionalized with 24 carboxylic acid groups. The cavities are reticulated in three dimensions via Cu­(II)-paddlewheel clusters and (functionalized) 1,3,5-benzenetricarboxylate linkers to form three- and four-component HKUST-1 analogues.Peer reviewe

    Discovery of Yttrium, Zirconium, Niobium, Technetium, and Ruthenium Isotopes

    Full text link
    Currently, thirty-four yttrium, thirty-five zirconium, thirty-four niobium, thirty-five technetium, and thirty-eight ruthenium isotopes have been observed and the discovery of these isotopes is discussed here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.Comment: To be published in Atomic Data and Nuclear Data Table

    Discovery of Rubidium, Strontium, Molybdenum, and Rhodium Isotopes

    Full text link
    Currently, thirty-one rubidium, thirty-five strontium, thirty-five molybdenum and thirty-eight rhodium isotopes have been observed and the discovery of these isotopes is discussed here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.Comment: To be published in Atomic Data and Nuclear Data Table
    corecore